
ELEN0062 - Introduction to machine learning
Project 1 - Classification algorithms

October 2nd, 2024

In this first project, you will get accustomed with some classical machine learn-
ing algorithms and concepts, such as under and overfitting. For each algorithm,
we ask you to deliver a separate Python script. Make sure that your experiments
are reproducible (e.g., by manually fixing random seeds). Add a brief report (PDF
format, roughly 4 pages without the figures) giving your observations and conclu-
sions. Each project must be carried out by groups of two to three students and
submitted to Gradescope1 before October 27, 23:59 GMT+2. There will be two
projects to submit to: one for your Python scripts and one for your report. Note
that attention will be paid to how you present your results. Careful thoughts in
particular - but not limited to - should be given when it comes to plots. Values
for the hyperparameters of all the methods tested are given below to answer the
various questions. However, feel free to deviate from these values to support your
discussions if you feel it is appropriate.

Files
You are given several files, among which are data.py and plot.py. The first one
provides a function make_dataset that generates the binary classification dataset
that will be used for the experiments. Unless specified otherwise, we ask you to
keep all parameters of the function to their default values (except for the npoints
argument). This will generate a dataset with two real input variables. The exam-
ples are sampled from two circular Gaussian distributions with the same diagonal
covariance matrices, centered at (+1.5, +1.5) for the negative class and (−1.5,−1.5)
for the positive class. Examples of the negative class are three times more frequent
than examples from the positive class. See Figure 1 for an example dataset. For
each experiment, you will generate 3000 samples: the first 1000 will be used as the
training set and the remaining ones as the testing set.

The file plot.py contains a function which depicts the decision boundary of a
trained classifier. Note that you should use a dataset independent of the learning
set to visualize the boundary.

Only modify the other files, which you must archive before submitting.

1 Decision tree (dt.py)
In this section, we will study decision tree models (see DecisionTreeClassifier
from sklearn.tree). More specifically, we will observe how the model’s complexity
affects the classification boundary. To do so, we will build several decision tree
models with max_depth values of 1, 2, 4, 8, and None (and all other parameters set
to their default values). Answer the following questions in your report.

1. Observe how the decision boundary is affected by tree complexity.

(a) Illustrate and explain the decision boundary for each hyperparameter
value.

(b) Discuss when the model is clearly underfitting/overfitting and detail your
evidence for each claim.

1https://www.gradescope.com. The course entry code is EVGWRX. Please register with your
official ULiège email address.

1

https://www.gradescope.com


Figure 1: One randomly generated dataset of 1000 points.

(c) Explain why the model seems more confident when max_depth is the
largest.

2. Report the average test set accuracies over five generations of the dataset,
along with the standard deviations, for each value of max_depth. Briefly
comment on them.

2 K-nearest neighbors (knn.py)
In this section, we will study nearest neighbors models (see the KNeighborsClassifier
class from sklearn.neighbors) on a dataset generated by make_dataset. More
specifically, we will observe how model complexity impacts the classification bound-
ary. To do so, we will build several nearest neighbor models with n_neighbors
values of 1, 5, 50, 100, and 500. Answer the following questions in your report.

1. Observe how the decision boundary is affected by the number of neighbors.

(a) Illustrate the decision boundary for each value of n_neighbors.
(b) Comment on the evolution of the decision boundary with respect to the

number of neighbors.

2. Report the average test set accuracies over five generations of the dataset,
along with the standard deviations, for each value of n_neighbors. Briefly
comment on them.

2



3 Perceptron (perceptron.py)
In this section, we will study a simple classification model based on a single neu-
ron, also called a perceptron classifier. A single neuron computes a (numerical)
prediction using the following formula:

f̂(x; w) = σ(w0 +
p∑

j=1
wjxj), (1)

where x = (x1, . . . , xp) denotes the p input variables, σ is an activation function and
w = [w0, w1, . . . , wp] ∈ IRp+1 is the vector of trainable parameters. Let us assume
a binary classification problem with the output class defined in {0, 1}. The output
of the neuron is turned into a class prediction using the following rule:

ŷ(x; w, dth) =
{

1, if f̂(x; w) ≥ dth,

0, otherwise.
(2)

where dth is some decision threshold. In this project, we propose to use a sigmoid
function as the activation function:

σ(x) = 1
1 + e−x

. (3)

In this case, the output of the neuron will always be between 0 and 1 and can be
interpreted as an estimate of the class conditional probability of class 1, i.e.:

P̂ (Y = 1|x; w) = f̂(x; w). (4)

A natural decision threshold is therefore dth = 0.5 that you will use in all experi-
ments.

To train the model, one usually finds w∗ that minimizes some loss function.
Given the interpretation of f̂ as the class conditional probability, we will use here
the cross-entropy loss defined as:

L(x, y, w) = −y log(f̂(x; w))− (1− y) log(1− f̂(x; w)), (5)

where x is an instance and y ∈ {0, 1} its observed class. We will minimise the sum
of the loss over the learning set in the simplest way, i.e., using stochastic gradient
descent. The idea is to iterate over all learning pairs (x, y) and update the parameter
vector w according to the following rule:

w← w− η∇wL(x, y, w) (6)

where η is an hyperparameter called the learning rate, which is introduced to prevent
overfitting. Another hyperparameter of the algorithm is the number of epochs, T ,
i.e., the number of passes over the entire learning set.

Answer the following questions in your report

1. Derive the mathematical expression of the gradient ∇wL(x, y, w), which is
necessary for implementing the stochastic gradient descent algorithm.

2. Implement your own perceptron estimator according to the above descrip-
tion and following the scikit-learn convention (http://scikit-learn.org/
dev/developers/). Suggestion: Fill in the class whose template is given in
perceptron.py. Briefly explain and motivate your implementation choices in
the report (e.g., explain how you initialize the weights and in which order you
are you going through the learning examples in each epoch).

3

http://scikit-learn.org/dev/developers/
http://scikit-learn.org/dev/developers/


3. Using the same sizes for the learning and test sets (i.e., respectively 1000 and
2000) as in previous sections:

(a) Illustrate the decision boundary of the perceptron classifier for different
values of the learning rate η. Fix the number of epochs T to 5 and use
the values of η in {1× 10−4, 5× 10−4, 1× 10−3, 1× 10−2, 1× 10−1}.

(b) Comment on the evolution of the decision boundary with respect to η.

4. Report the average test set accuracies over five generations of the dataset,
along with the standard deviations, for each value of η. Briefly comment on
them.

4 Method comparison (mc.py)
We would like now to compare the three methods for this specific dataset. Since all
methods depend on hyperparameters, we need to find a way to tune them. Below,
you can tune each of them by exploring the set of candidate values suggested in the
previous sections.

Answer the following questions in your report:

1. Explain a way to tune the value of max_depth, n_neighbors, and η using
only the learning set.

2. Implement this method and use it to compute the average test set accura-
cies over at least five generations of the dataset, along with the standard
deviations, for the tuned decision tree, k-nearest neighbors methods, and per-
ceptron.

3. Repeat the previous experiment but this time by adding 200 new input fea-
tures to the dataset that are pure Gaussian noise and thus not related to the
class. You can use the argument n_irrelevant of the function make_dataset
to add them to the generated dataset. These features are all centered at 0
and have the same standard deviation as the original two features.

4. Discuss the performance and the ranking of the different methods in the two
settings, i.e., without and with the noisy features. Try to explain the possible
differences between these two settings.

4


	Decision tree (dt.py)
	K-nearest neighbors (knn.py)
	Perceptron (perceptron.py)
	Method comparison (mc.py)

