ELENO0062 - Introduction to machine learning
Project 1 - Classification algorithms

October 1st, 2025

In this first project, you will get accustomed with some classical machine learn-
ing algorithms and concepts, such as under- and over-fitting. For each algorithm,
we ask you to deliver a separate Python script. Make sure that your experiments
are reproducible (e.g., by manually fixing random seeds). Add a brief report (pdf
format, roughly 4 pages without the figures) giving your observations and conclu-
sions. Each project must be carried out by groups of two to three students and
submitted to Gradescopeﬂ before October 24th, 23:59 GMT+2. There will be two
projects to submit to: one for your Python scripts and one for your report. Note
that attention will be paid to how you present your results. Careful thoughts in
particular - but not limited to - should be given when it comes to plots.

Files

You are given several files, among which are data.py and plot.py. The first one
generates binary classification datasets with two real input variables. More precisely,
the examples are sampled from two Gaussian distribution.

In the following, you will work with a dataset consisting of two Gaussian dis-
tributions (make_datasetl), and a real dataset that classifies breast cancerﬂ for
questions 3 and 4, which contains 569 samples and 30 features.

Use 1,200 samples for the first dataset. The second one has 569. For both, use
75% of the dataset for learning, and the rest for testing.

The plot.py file contains a function which depicts the decision boundary of a
trained classifier. Note that you should use a dataset independent of the training
set to visualize the boundary!

The other files must be completed and submitted together with the report.

1 Decision tree (dt.py)

In this section, we will study decision tree models (see the DecisionTreeClassifier
class from sklearn.tree). More specifically, we will observe how model complexity
impacts the classification boundary. To do so, we will build several decision tree
models with max_depth values of 1,2,4,6 and None (and all other parameters set
to their default values). For this question, you should work on datasets generated
by make_datasetl. Answer the following questions in your report.

1. Observe how the decision boundary is affected by tree complexity:
(a) illustrate and explain the decision boundary for each hyperparameter
value;

(b) discuss when the model is clearly underfitting/overfitting and detail your
evidence for each claim;

¢) explain why the model seems more confident when max_depth is the
y p
largest.

2. Report the average test set accuracies over five generations of the dataset,
along with the standard deviations, for each value of max_depth. Briefly
comment on them.

Thttps://www.gradescope.com. The course entry code is 7XYGVW. Please register with your
official ULiége email address.
%https://archive.ics.uci.edu/dataset/14/breast+cancer

https://www.gradescope.com
https://archive.ics.uci.edu/dataset/14/breast+cancer

datasetl

10.0
7.5 1
5.0 1

2.5 -

§ 2l e

0.0 1 e s AT
Canisky SO

—2.51

X1

_5.0 4

_7.5 4

—10.0 1

Figure 1: Dataset generated by make_datasetl.

2 K-nearest neighbors (knn.py)

In this section, we will study nearest neighbors models (see the KNeighborsClassifier
class from sklearn.neighbors). More specifically, we will observe how model com-
plexity impacts the classification boundary. To do so, we will build several nearest
neighbor models with n_neighbors values of 1,5,25,125,500 and 899. For this
question, you should work on datasets generated by make_datasetl. Answer the
following questions in your report.

1. Observe how the decision boundary is affected by the number of neighbors:

(a) illustrate the decision boundary for each value of n_neighbors.

(b) comment on the evolution of the decision boundary with respect to the
number of neighbors.

2. Report the average test set accuracies over five generations of the dataset,
along with the standard deviations, for each value of n_neighbors. Briefly
comment on them.

3 Quadratic/Linear discriminant analysis (qda.py)

Quadratic and linear discriminant analyses are two classification methods (not cov-
ered in the theoretical lectures) that are based on the assumption that input vectors
from each class are distributed according to a multivariate Gaussian distribution.
Class conditional density functions fi(z) (with k = 1,..., K) are then written as

1 1 Ty —1
- = —g(rmpk) B (z—pk)
fi(2) (277)13/2|Zk|1/26 ’ N (1)
where x € RP is the feature vector and pi and X are respectively the mean and
covariance matrix corresponding to class k. Applying Bayes’ theorem yields that

the probability of an example x belonging to class k is given by:

P(y = k) = DT

> filz)m
where m, = P(y = k) (k =1,...,K) is the prior probability of class k. The final
predicted class, that minimizes the error rate, is then the most probable class at x
given by argmax; P(y = k|x).

Linear discriminant analysis (LDA) assumes that the covariance matrices are
equal for each class, i.e., X =3 Vk. This property is called homoscedasticity. On
the other hand, quadratic discriminant analysis (QDA) makes no such assumption.

Learning a QDA/LDA model requires to estimate the prior probabilities
(k=1,...,K), the means of each class ux (k = 1,...,K) and the different class
conditional covariance matrices ¥ for QDA and the common covariance matrix X
for LDA. These can be inferred from the data by the usual maximum likelihood
estimators. Contrary to k-nearest neighbors and decision trees, QDA /LDA does
not have any hyper-parameters to tune (but relies on the Gaussian and, for LDA,
homoscedasticity assumptions).

(2)

We ask you to implement your own QDA /LDA estimator according to the above
description and following the scikit-learn convention [f| by filling in the qda.py file.
Both algorithms will be implemented in the same functions, with the choice between
QDA and LDA determined by a binary hyper-parameter, denoted 1da (True or
False). The implementation can be restricted to the binary classification case.

Answer the following questions in your report:

1. In the case of two classes, show mathematically that the decision boundary
of QDA is quadratic and that the decision boundary of LDA is linear (hence
the names of the two methods).

2. HNlustrate the decision boundary of both methods on the first dataset. Briefly
comment on the results.

3. Report the average accuracy over five generations of the dataset along with
the standard deviation for both methods and both datasets. Comment on these
results by comparing the two methods.

4 Method comparison

We would like now to compare all four methods on the two datasets. Since decision
trees and k-nearest neighbors depend on a hyper-parameter, we need to find a way
to tune it. Below, you can tune each of them by exploring the set of candidate
values suggested in the previous sections.

Answer the following questions in your report:

1. Explain a way to tune the value of max_depth and n_neighbors using only
the learning set.

2. Implement this method and use it to compute the average test set accuracies
over five generations of the dataset, along with the standard deviations for
the tuned decision tree and K-nearest neighbors methods on both datasets.

3. Compare these results with those obtained at question 3.3. Discuss the rank-
ing of the methods on the two datasets.

Shttp://scikit-learn.org/dev/developers/

http://scikit-learn.org/dev/developers/

	Decision tree (dt.py)
	K-nearest neighbors (knn.py)
	Quadratic/Linear discriminant analysis (qda.py)
	Method comparison

